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4. Rationale:  

 

Alzheimer’s disease (AD) is a major public health burden, afflicting 5.1 million 

Americans aged 65 or older and accounting for nearly twenty percent of Medicare 

expenditures [1]. Demographic changes will cause the number of affected elderly to triple 

by 2050, costing the nation $1.1 trillion [1]. Although there are no effective treatments to 

prevent, slow, or cure AD, researchers have made great strides in dissecting its genetic 

etiology. The largest (>74,000 participants) and most-recent genome-wide association 

study (GWAS) of late-onset AD (LOAD) revealed twenty loci [2] containing common 

variants with small effect sizes (except for the APOE 4 allele).  These variants 

collectively explained a small proportion of the LOAD heritability [3], inspiring 

researchers to conduct targeted, whole-exome, and whole-genome sequencing studies to 

identify a handful of rare and low-frequency variants with large effect sizes [4-13]. These 

studies implicated variants from the whole allele frequency spectrum [14] and provided 

insight into the diverse biological processes and pathways involved in LOAD. 

Unfortunately, the identification of additional variants is constrained by the number of 

genotyped cases and controls currently available [6].  

New approaches, such as the use of AD biomarkers or neuroimaging measures, 

may facilitate the identification of both common and rare candidate drug targets from a 

moderate number of sequenced participants. Given a fixed sample size, endophenotypes 

have a greater statistical power than diagnostic outcomes because they are quantitative, 

objective, and closer to the level of gene action [15, 16]. Endophenotypes may also be 

influenced by greater genetic effects and allow analysis of all participants without regard 

to disease status (i.e. do not restrict the analysis to AD cases and cognitive normals) [15, 

16]. A few GWAS have successfully leveraged the two hallmark characteristics of AD, 

the prevalence of -amyloid plaques outside brain neurons and the accumulation of tau 

tangles inside brain neurons[1], as endophenotypes [17-22]. We will employ two less-

invasive and less-expensive plasma biomarkers associated with AD [23]: amyloid 42 

(a42) levels and the ratio of a42 to amyloid 40 (a40). These plasma amyloid traits are 

ascertained from blood, exhibit a large heritability (50-80%)[24], and may indicate early 

amyloid pathogenesis preceding the plaque cascade.  Furthermore, measuring amyloids in 

stored blood from past examinations enables an assessment of age-specific genetic effects 

and a refined granularity of biological changes occurring over time. 

 

Our aim is to identify common and rare variants that influence plasma amyloids 

in late middle age, old age, or their changes over time. We will accomplish this aim 

through a whole exome sequence analysis of plasma amyloids using 1,414 participants 

(406 African Americans and 1,008 European Americans) from the Atherosclerosis Risk 

in Communities-Neurocognitive Study (ARIC-NCS). This study is particularly well-

suited for this investigation for several reasons. First, participants had two amyloid 

measurements spaced an average of 18 years apart, with mean ages of 59 and 77 years for 



the two blood draws. Second, ARIC-NCS is enriched for atypical cognition, and hence 

should be enriched for variants contributing to neurocognitive impairment and the 

amyloid plaque cascade. Third, the inclusion of African Americans allows exploration of 

rare population-specific variants with large effects which may contribute to health 

disparities. Overall, this investigation will provide insight into the influence of age on 

amyloid gene discovery efforts. 

 

5. Main Hypothesis/Study Questions: 

 

Our aim is to identify common and rare exomic variants that influence plasma amyloids 

(a42 levels and the a42: a40 ratio) in late middle age, old age, or their changes over 

time. We will compare and contrast the findings in the different life phases to explore the 

impact of age on plasma amyloid gene discovery efforts in African and European 

Americans. 

 

6. Design and analysis (study design, inclusion/exclusion, outcome and other 

variables of interest with specific reference to the time of their collection, summary 

of data analysis, and any anticipated methodologic limitations or challenges if 

present). 

 

Study Design: 

Cross-sectional gene-discovery study at both the third and fifth visits. In addition, 

the fold-change in amyloids between visits will be used as a trait in the whole exome 

sequence analysis. 

 

 

Exclusion Criteria: 

 Participants missing amyloids or whole exome sequence 

 Race other than African or European American 

 Participants missing covariates (listed below) 

 Individuals who did not consent to DNA use 

 

 

Outcomes (all in plasma): 

1) a42 levels at visit 3 

2) a42 levels at visit 5 

3) fold-change in a42 levels from visit 3 to visit 5 

4) a42: a40 ratio at visit 3 

5) a42: a40 ratio at visit 5 

6) fold-change in a42: a40 ratio from visit 3 to 5 

 

Covariates: 

 visit-specific age (in years) 

 gender 

 apolipoprotein E 4 carrier status (dichotomous yes/no; ascertained from TaqMan 

assays) 



 time elapsed between visits (in years; included with the third visit age when 

modeling the fold-changes in plasma amyloids only) 

 Eigenstrat-derived principal components to adjust for population substructure  

 

Exome Sequence:  

Of the participants with amyloids, 1,414 (406 AAs, 1,008 EAs) had whole exome 

sequence and all covariates available. This sequence data was quality-controlled as 

part of the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) consortium. A full annotation file and description of the methods is 

available. 

 

 

Statistical Methods: 

Single-visit amyloid measures will be linearly regressed onto age, gender, and APOE 

4 carrier status separately by race. The fold-change amyloid traits will be regressed 

onto age at the third visit, the time elapsed between visits, gender, and APOE 4 

carrier status separately by race. Following rank-based inverse normal 

transformation of the residuals, we will use seqMeta version 1.5 to conduct ethnic-

specific single-variant and gene-based association tests while adjusting for 

population structure (the first ten PCs). Linear regression models will be fit on all 

autosomal SNPs with minor allele frequency (MAF) ≥0.01 while Sequence Kernel 

Association Tests (SKAT) and T5 gene-based tests will be conducted on 

nonsynonymous, splicing, stopgain, stoploss, or frameshift autosomal variants with 

MAF ≤ 0.05. For both the single-variant and gene-based tests, we will conduct a 

meta-analysis of the African and European American results and apply a Bonferonni 

correction for the number of variants or genes tested. 

 

Replication: 

Sudha Seshadri from the Framingham Heart Study (FHS) has agreed to replicate our 

single-visit findings. FHS has multiple generations and can tailor replication of each 

significant variant or gene to the age group that mirrors our ARIC visit. Given the 

paucity of African American amyloid data, we may attempt replication of ethnic-

specific findings in ARIC participants that are missing exome sequence data but 

have exome chip or 1000G GWAS data; however, there is no guarantee that the 

variants of interest will be genotyped and/or of high imputation quality.  

 

Limitations:  

 

 No readily available replication samples for variants or genes (if any) 

contributing to amyloid fold-changes over time.  

 

 We do not have a representative sample. Plasma amyloids were retroactively 

measured in a sample of participants that survived to visit 5. Thus those with 

amyloids measured at the third visit have a survivor bias. As this is a gene-

discovery project, no weighting will be used in the primary analysis but 

replication in the FHS will be of the upmost importance.  



 Amyloids were measured on 69 plates; we will perform a sensitivity analysis to 

ascertain whether adjustment for these batch effects alters any significant 

associations. We will not correct for plate effects in the primary analysis because 

the small number of participants per plate may introduce too much statistical 

noise. The largest published GWAS of plasma amyloid-to dateignored such 

plate effects [25]. 

 

 Some amyloids were below the assay detection limit. For the single-visit 

analyses of a42, samples with intensities below the minimal detectable level will 

be assigned the threshold concentrations (12 pg/ml). These individuals will be 

omitted from the visit-specific analysis of the a42:a40 ratio and the fold-

changes in both 42 and the ratio since the ranks of those with missing data 

relative to those with nonmissing values are unknown. 
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